
1

A Plugin for HDF5 using PLFS for Improved I/O
Performance and Semantic Analysis

Kshitij Mehta∗, John Bent†, Aaron Torres‡, Gary Grider‡, Edgar Gabriel∗
∗ Department of Computer Science at University of Houston † EMC Corporation ‡

Los Alamos National Laboratory

Abstract—HDF5 is a data model, library and file format for storing and managing data. It is designed for flexible and
efficient I/O for high volume and complex data. Natively, it uses a single-file format where multiple HDF5 objects are
stored in a single file. In a parallel HDF5 application, multiple processes access a single file, thereby resulting in a
performance bottleneck in I/O. Additionally, a single-file format does not allow semantic post processing on individual
objects outside the scope of the HDF5 application. We have developed a new plugin for HDF5 using its Virtual Object
Layer that serves two purposes: 1) it uses PLFS to convert the single-file layout into a data layout that is optimized for
the underlying file system, and 2) it stores data in a unique way that enables semantic post-processing on data. We
measure the performance of the plugin and discuss work leveraging the new semantic post-processing functionality
enabled. We further discuss the applicability of this approach for exascale burst buffer storage systems.

Index Terms—HDF5, PLFS, semantic analysis

F

1 INTRODUCTION

Hierarchical Data Format (HDF5) is a technol-
ogy suite for efficient management of large
and complex data [7]. It supports complex
relationships between data and dependencies
between objects. HDF5 is widely used in indus-
try and scientific domains, in understanding
global climate change, special effects in film
production, DNA analysis, weather prediction,
financial data management etc. [10] Parallel
HDF5 (PHDF5) [3] enables developing high
performance, parallel applications using stan-
dard technologies like MPI in conjunction with
HDF5. PHDF5 exports a standard parallel I/O
interface which itself uses MPI’s parallel I/O
functionality. This is used along with parallel
file systems to achieve high performance I/O.

An HDF5 file is a self-describing format
which combines data and metadata. It is a
container in which users typically store mul-
tiple HDF5 objects alongside their metadata.
However, this native single-file format has its
disadvantages. A PHDF5 application has mul-
tiple processes accessing a single file (i.e. N-
1 access pattern). Unfortunately, many popu-

lar parallel file systems are known to behave
poorly under these circumstances [2, 12]. Sec-
ondly, since many HDF5 objects are stored in a
single file, this complicates performing useful
semantic operations on individual objects.

PLFS (Parallel Log-Structured File System)
is a middleware virtual file system developed
at Los Alamos National Lab (LANL) [5]. It
converts writes to a shared logical file into
writes to multiple physical files to overcome
the performance bottleneck associated with N-
1 writes. However, it suffers from an inability
to understand the structure of the data that it
stores.

In this paper, we enhance the performance
of HDF5 by addressing the performance issues
inherently arising from poor file system per-
formance on N-1 access patterns, and augment
performing useful post-processing on HDF5
objects. We have developed a new plugin for
HDF5 using its recently introduced Virtual
Object Layer (VOL). This plugin stores data
in a unique way that enables semantic post-
processing on HDF5 objects, and uses PLFS to
convert N-1 accesses into N-N accesses, thereby
resulting in improved I/O performance.



2

2 BACKGROUND

HDF5 is a versatile data model containing com-
plex data objects and metadata. Its information
set is a collection of datasets, groups, datatypes
and metadata objects. The data model defines
mechanisms for creating associations between
various information items. The main compo-
nents of HDF5 are described below.

File: In the HDF5 data model the container
of an HDF5 infoset is represented by a file. It
is a collection of objects that also explains the
relationship between them. Every file begins
with a root group ”/”, which serves as the
”starting-point” in the object hierarchy.

Dataset: HDF5 datasets are objects that repre-
sent actual data or content. Datasets are arrays
which can have multiple dimensions. A dataset
is characterized by a dataspace and a datatype.
The dataspace captures the rank (number of
dimensions), and the current and maximum ex-
tent in each dimension. The datatype describes
the type of its data elements.

Group: A group is an explicit association be-
tween HDF5 objects. It is synonymous with di-
rectories in a file system. A group could contain
multiple other groups, datasets or datatypes
within it.

Attribute: Attributes are used for annotating
datasets, groups, and datatype objects. They
are datasets themselves, and are attached to
existing objects they annotate.

For example, as shown in figure 1, the file
”Sample.h5” contains the root group which
itself contains a group G1 and two datasets,
D1 and D2. Group G1 contains a dataset D3.
Attribute A1 is linked to dataset D1. The objects
and the relationships between them can be
represented as a B-tree, which is used internally
by HDF5 to index its objects.

Virtual Object Layer (VOL): VOL is a new ab-
straction layer internal to the HDF5 library [4].
It is implemented just below the public API.
The VOL exports an interface that allows writ-
ing plugins for HDF5, thereby enabling de-
velopers to store objects in a format different
from the default HDF5 file format (like native
netCDF or HDF4 format). Plugin writers pro-
vide an implementation for a set of functions
that access data on disk. These include func-

Fig. 1. A sample HDF5 file

tions for file management, dataset creation and
access, group creation, to name a few.

PLFS is a middleware virtual file system that
converts writes to a shared logical file into
writes to multiple physical files. It is situated
between the application and the parallel file
system responsible for the actual data storage.
It transforms N-1 into N-N, where every pro-
cess participating in I/O writes data to its own,
separate file. The basic operation of PLFS is as
follows. For every writer to a logical file, PLFS
creates a unique physical file on the underlying
parallel file system. It also maintains sufficient
metadata to recreate the shared logical file. We
added a new feature to PLFS called extendible
attributes (Xattrs). Xattrs serve as short, exten-
sible metadata stored as key-value pairs. They
can be used to store user-defined information
about data for easy and fast retrieval.

Users can interface with PLFS directly by
using the PLFS API or by using its MPI-IO
driver (ad plfs).

3 PLUGIN

We have developed a plugin which stores
data in a format which enables performing
semantic analysis on the data and uses PLFS
for high I/O throughput. Instead of storing all
objects in a single file, it stores every HDF5



3

object in a separate location, so that data from
different objects is not contained in the same
file. In short, we provide a raw mapping of
HDF5 objects to the file system. HDF5 files
and groups are stored as directories, whereas
datasets and attributes, which contain raw
data, are stored in files created using PLFS.
Consider the example shown in figure 1.
Using the plugin, file Sample.h5 is stored as
a directory. Group G1 is stored as a directory
under it, and datasets D1 and D2 are files.
Attribute A1 is a file created at the same
location as dataset D1 to which it is attached.
Additionally, the name of the attribute is
stored as dataset name.attribute name to denote
the dataset to which the attribute is attached.
Thus these objects are stored at the following
paths:
/Sample.h5/
/Sample.h5/G1
/Sample.h5/G1/D3
/Sample.h5/D1
/Sample.h5/D1.A1
/Sample.h5/D2

We can see that the relationship between the
objects is represented by their relative paths
at the file system. That is, the path /Sam-
ple.h5/G1/D3 tells us that D3 is a dataset
belonging to Group G1 under the root group
of the file. This approach gives us the ability
to distinguish HDF5 objects inside the storage
system. Also, the plugin eliminates the need
to explicitly store the metadata describing the
relationship between objects. Metadata about
datasets, such as the datatype, extent, dimen-
sions etc. are stored as Xattrs.

Our plugin makes direct calls to the PLFS
API. For the current version, we do not support
collective I/O operations. It should be noted
that HDF5 when used natively with MPI-IO
allows users to specify whether collective I/O
should be used for reading and writing data.

The above format of storing data allows us
to perform at least two different analysis opti-
mizations. To illustrate via an example, imag-
ine storing a three-dimensional ocean model
within a PLFS file. The storage system sees the
file as an opaque linear array of bytes. With
the structure, however, PLFS can provide active

analysis as well as semantic restructuring.
Active analysis borrows the transducers idea

from the Semantic File System [9] which has
since been productized in Google’s BigTable
and Apache Hbase technologies [6, 8, 14]. With
active analysis, the application can ship a data
parser function when it creates the PLFS file.
As the data is written into PLFS, PLFS can
apply the data function on the streaming data.
The function will output key-value pairs which
PLFS can embed in its extensible metadata. In
this example, one simple function might record
the height of the largest wave. Due to PLFS’s
model of storing a logical file across multiple
physical files, the PLFS extensible metadata can
record the height of the largest wave within
each physical file. However, given that PLFS
now understands the structure of the logical
file, these multiple physical files, within the
PLFS container, are more accurately thought
of as shards. In a future burst buffer architec-
ture [11], these semantic shards will be spread
across multiple burst buffer nodes. Therefore,
subsequent analysis of the ocean model can
quickly find the burst buffer containing the
shard with the largest wave by searching a
small amount of extensible metadata instead of
scanning the entire ocean model.

Semantic restructuring is the idea of reor-
ganizing the data into a new set of semantic
shards. This would be done to speed future
analysis routines. For example, assume that
the ocean model was originally sharded us-
ing a row-order organization (i.e. across lati-
tude instead of longitude). An analysis routine
which will explore the model along a column-
ordering will suffer poor performance with the
row-order organization as its access pattern
will result in a large number of small reads
from a large set of semantic shards. However,
by knowing the semantic structure, the anal-
ysis routine can request a semantic restruc-
turing which will be a compact, intuitively
described request such as ”restructure into
row-ordering.” Without structural knowledge,
a semantic restructuring would be significantly
more complicated: the analysis routine would
have to send a large list of logical offsets to
PLFS to inform it of expected read patterns.
In an exascale system, the list of logical offsets



4

will be in the order of one billion. Semantic
restructuring shrinks the size of the request to
a small constant value.

4 EVALUATION

For evaluation purposes, we have used HDF5’s
h5perf performance tool [1]. It allows configur-
ing various parameters, such as the number of
processes, number of datasets, amount of data
read/written by a process in a single I/O call
(transfer size) etc. For our measurements, we
created 10 datasets, and the total file size was
64 GB or more. In every run, every process
contributed equal amount of data per dataset
using the default individual (non-collective)
I/O mode of h5perf.

Tests were performed on the Lustre parallel
file system [13] on the Atlas cluster at Univer-
sity of Dresden. The file system has 12 OSTs
with a stripe size of 1MB. The file system
is connected to the compute nodes using an
SDR Infiniband link. The cluster has 92 AMD
Opteron nodes with 64 cores each and 64 to
512 GB memory. Tests were run thrice and we
present the average bandwidth values, which
does not include the time taken to open and
close the file.

We have performed tests with 1,2,4,8,32 and
64 processes with a maximum of 4 processes
per node. Reads and writes are either con-
tiguous or interleaved; processes either access
contiguous locations in file or execute a strided
pattern. We compare the performance of the
default MPI-IO driver, our plugin, and the
PLFS MPI-IO driver (ad plfs).

In Figure 2, we show the write performance
for a transfer size of 1MB for contiguous writes.
It can be seen that the plugin regularly outper-
forms MPI-IO except for the 64 process case,
where the metadata overhead incurred by the
plugin is high. The performance of ad plfs is
the best for higher process counts. Figure 3
shows the performance of contiguous reads.
Figures 4 and 5 show the interleaved write and
read performance respectively for an unaligned
transfer size (1M + 10bytes) for a maximum
of 8 processes. The write performance of MPI-
IO is quite poor in this case. The plugin easily

 128

 256

 512

 1024

 2048

1 2 4 8 32 64

M
B

p
s

No. of processes

MPI-IO
Plugin

ad_plfs

Fig. 2. Performance of contiguous writes

outperforms MPI-IO and almost matches the
performance of ad plfs.

Overall, results show that the plugin con-
sistently shows good performance, however it
does not scale as well as ad plfs. This is due to
the fact that since we are directly making calls
to the PLFS API, the metadata overhead is high.
All processes participate in file open and close
operations, which for large problem sizes adds
significant overhead. Hence, for future work,
we plan to use ad plfs directly in the plugin
which can overcome this performance draw-
back, since ad plfs has collective optimizations
in open and close. It should be noted that there
are some MPI libraries tailored to suit specific
types of applications and which do not provide
an implementation for MPI-IO. Such libraries
can benefit from using a plugin that does not
rely on MPI-IO.

5 CONCLUSION

Using HDF5’s virtual object layer, we have
developed a new plugin that makes use of
PLFS for improved I/O performance. We de-
viate from HDF5’s native file format and store
data in a way that allows us to perform useful
post-processing independently on HDF5 ob-
jects. Such a format can further allow us to
incorporate semantic analysis of data for burst
buffer type workloads. Initial results show that



5

 256

 512

 1024

 2048

 4096

 8192

1 2 4 8 32 64

M
B

p
s

No. of processes

MPI-IO
Plugin

ad_plfs

Fig. 3. Performance of contiguous reads

 128

 256

 512

 1024

1 2 4 8

M
B

p
s

No. of processes

MPI-IO
Plugin

ad_plfs

Fig. 4. Performance of interleaved, unaligned
writes

our plugin outperforms MPI-IO in most cases,
whereas MPI-IO when used with PLFS’s MPI-
IO driver shows the best results.

REFERENCES

[1] h5perf User Guide. http://www.hdfgroup.org/HDF5/
doc/UG/index.html.

[2] I/O Patterns from NERSC Applications. https://
outreach.scidac.gov/hdf/NERSC\ User\ IOcases.pdf.

[3] Parallel HDF5. http://www.hdfgroup.org/HDF5/
PHDF5/.

[4] Virtual Object Layer. https://confluence.hdfgroup.uiuc.
edu/display/VOL/Virtual+Object+Layer.

 128

 256

 512

 1024

1 2 4 8

M
B

p
s

No. of processes

MPI-IO
Plugin

ad_plfs

Fig. 5. Performance of interleaved,unaligned
reads

[5] John Bent, Garth Gibson, Gary Grider, Ben McClel-
land, Paul Nowoczynski, James Nunez, Milo Polte, and
Meghan Wingate. Plfs: a checkpoint filesystem for parallel
applications. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis,
SC ’09, pages 21:1–21:12, New York, NY, USA, 2009. ACM.

[6] Jeff Dean. Designs, Lessons and Advice from Building
Large Distributed Systems, 2009. http://www.odbms.
org/download/dean-keynote-ladis2009.pdf.

[7] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal,
and Dana Robinson. An overview of the hdf5 technology
suite and its applications. In Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, AD ’11, pages 36–47,
New York, NY, USA, 2011. ACM.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, SOSP ’03,
pages 29–43, New York, NY, USA, 2003. ACM.

[9] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and
James W. O’Toole, Jr. Semantic file systems. In Proceedings
of the thirteenth ACM symposium on Operating systems
principles, SOSP ’91, pages 16–25, New York, NY, USA,
1991. ACM.

[10] HDF group. HDF5 Users. http://www.hdfgroup.org/
HDF5/users5.html.

[11] Ning Liu, J. Cope, P. Carns, C. Carothers, R. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the role of
burst buffers in leadership-class storage systems. In Mass
Storage Systems and Technologies (MSST), 2012 IEEE 28th
Symposium on, pages 1 –11, april 2012.

[12] J. Logan and P. Dickens. Towards an understanding of the
performance of mpi-io in lustre file systems. In Cluster
Computing, 2008 IEEE International Conference on, pages
330 –335, 29 2008-oct. 1 2008.

[13] Lustre webpage. http://www.lustre.org.
[14] Andrew Purtell Mingjie Lai, Eugene Koontz. Apache

HBase. https://blogs.apache.org/hbase/entry/
coprocessor\ introduction.


